
DeepFuzz: Automatic Generation of Syntax Valid C Programs for Fuzz Testing

Xiao Liu, Xiaoting Li, Rupesh Prajapati, Dinghao Wu
College of Information Sciences and Technology

The Pennsylvania State University
University Park, PA 16802, USA

Abstract

Compilers are among the most fundamental programming
tools for building software. However, production compilers
remain buggy. Fuzz testing is often leveraged with newly-
generated, or mutated inputs in order to find new bugs or
security vulnerabilities. In this paper, we propose a grammar-
based fuzzing tool called DEEPFUZZ. Based on a generative
Sequence-to-Sequence model, DEEPFUZZ automatically and
continuously generates well-formed C programs. We use this
set of new C programs to fuzz off-the-shelf C compilers, e.g.,
GCC and Clang/LLVM. We present a detailed case study to
analyze the success rate and coverage improvement of the
generated C programs for fuzz testing. We analyze the per-
formance of DEEPFUZZ with three types of sampling meth-
ods as well as three types of generation strategies. Conse-
quently, DEEPFUZZ improved the testing efficacy in regards
to the line, function, and branch coverage. In our preliminary
study, we found and reported 8 bugs of GCC, all of which are
actively being addressed by developers.

Introduction

Compilers are among the most important software of com-
puting systems and they are typically part of the trust com-
puting base, but they remain buggy. For example, GCC, a
long-lasting software released in 1987, is a standard com-
piler for many Unix-like operating systems. Over 3,410 in-
ternal bugs (Yang et al. 2011) have been caught since it is
created. Similarly, for Java, Python, and JavaScript, thou-
sands of bugs have been found in those widely-used compil-
ers and interpreters. These compiler bugs can result in unin-
tended program executions and lead to catastrophic conse-
quences in security-sensitive applications. It may also ham-
per developer productivity in debugging a program when the
root cause cannot be decided in the applications or compil-
ers. Therefore, it is critical to improve the compiler correct-
ness. But it is not easy to validate compilers with the grow-
ing code base: the code base of today’s GCC is around 15
million lines of code (Sun et al. 2016), close to the entire
Linux kernel, which is around 19 million lines of code.

It is critical to make compilers dependable. In the past
decade, compiler verification has been an important and ac-
tive area for the verification grant challenge in computing

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

research (Hoare 2003). Mainstream research focuses on for-
mal verification (Leroy and Grall 2009), translation valida-
tion (Necula 2000), and random testing (Lidbury et al. 2015;
Le, Afshari, and Su 2014; Le, Sun, and Su 2015). The first
two categories try to provide certified compilers. For ex-
ample, CompCert (Leroy et al. 2016) has made promising
progress in this area. But in practice, it is challenging to ap-
ply formal techniques to fully verify a production compiler
such as GCC, especially when the proof is not constructed
together with the compiler. Therefore, testing remains the
dominant approach in compiler validation.

Our work focuses on compiler testing. By feeding in pro-
grams covering different features to different production
compilers turning on different levels of optimizations, inter-
nal compiler errors (genuine bugs of the compiler) may be
triggered during the compilation with a detailed error mes-
sage indicating where and what the error is. However, it is
challenging to generate “good” programs to make testing
more efficient and to build a continuous testing framework
by automating this process. Each test, including man-crafted
ones, in the existing methods, covers some features and it is
common today to see larger and larger test suites for modern
compilers. This improves the testing coverage but it takes a
lot of human effort to construct these tests. Nevertheless, a
practical way to reduce human labor for testing is fuzz test-
ing, or fuzzing.

Fuzzing (Bird and Munoz 1983) is a method to find bugs
or security vulnerabilities. A program is repeatedly execut-
ing with automatically generated or modified inputs to detect
abnormal behaviors such as program crashes. Main tech-
niques for input fuzzing in use today are black box ran-
dom fuzzing (Zalewski 2015), white box constraint-based
fuzzing (Godefroid, Kiezun, and Levin 2008), and grammar-
based fuzzing (Dewey, Roesch, and Hardekopf 2014). Black
box and white box fuzzing are fully automatic, and have
historically been proven to be effective in finding secu-
rity vulnerabilities in binary-format file parsers. In con-
trast, grammar-based fuzzing requires an input grammar
specifying the input format of the application under test,
which is typically written by hand. This process is laborious,
time-consuming, and error-prone. However, grammar-based
fuzzing is the most effective fuzzing technique known to-
day for fuzzing applications with complexly structured input
formats, e.g., compilers. In the scenario of compiler testing,

one way to deploy the grammar-based fuzzing is to encode
the C grammar as rules for test case generation. But in prac-
tice, C11 (of the International Organization for Standardiza-
tion (ISO) 2011), the current standard of the C programming
language, has 696 pages of detailed specifications, which
brings the hurdle for engineers to construct such a grammar-
based engine.

In this paper, we consider the problem of automatically
generating syntactically valid inputs for grammar-based
fuzzing with a generative recurrent neural network. To be
more specific, we aim to train a generative neural network
to learn the “grammar”, or to be more precise, the lan-
guage patterns, of the input data. We propose to train a
Sequence-to-Sequence model (Sutskever, Vinyals, and Le
2014) in a supervised learning strategy, leveraging the orig-
inal test suites provided with production compilers. Origi-
nally, the Sequence-to-Sequence model is widely used for
machine translation (Klein et al. 2017) and text genera-
tion (Sutskever, Martens, and Hinton 2011). Theoretically
speaking, by training a model on the original paragraphs, we
implicitly encode the correct spelling of words, valid syn-
taxes of sentences, detailed styles of writing behaviors into a
generative model. The same idea can be applied to program
synthesis, where we only need to train a model to generate
different syntactically valid programs on top of a seed data
set. For the training data set, we adopted the original GCC
test suite where there are over 10,000 short, or small, pro-
grams that cover most of the features specified in the C11
standard. On the training stage, we tune parameters to en-
code the language patterns for C programs into the model,
based on which, we continuously generate new programs for
compiler fuzzing.

Contributions. Our work is the first to use a generative re-
current neural network for grammar-based compiler fuzzing.

• First, the proposed framework is fully automatic. By train-
ing a Sequence-to-Sequence model which can be viewed
as an implicit representation of the language patterns for
the training data, C syntax in our context, our framework
DEEPFUZZ will continuously provide new syntactic cor-
rect C programs.

• Second, we build a practical tool for fuzzing off-the-shelf
C compilers. We conduct a detailed analysis of how key
factors will affect the accuracy of the generative model
and fuzzing performance.

• Third, we apply our DEEPFUZZ technique to test GCC
and Clang/LLVM. During our preliminary analysis, the
testing coverage (line, function, and branch) is increased
and we have found and reported 8 real-world bugs.

Overview

Sequence-to-Sequence Model

We build DEEPFUZZ on top of a Sequence-to-Sequence
model, which implements two recurrent neural networks
(RNNs) for character-level sequences prediction. An RNN
is a neural network that consists of hidden states h and an
optional output y. It operates on a variable-length sequence,

x = (x1, x2, ..., xT). At each step t, the hidden state h〈t〉 of
the RNN is updated by

h〈t〉 = f(h〈t−1〉, xt) (1)

where f is a non-linear activation function. An RNN can
learn a probability distribution over a sequence of charac-
ters to predict the next symbol. Therefore, at each timestep
t, the output from the RNN is a conditional distribution
p(xt|xt−1, ..., x1). For instance, in our case, upon a multi-
nomial distribution of the next character, we use a softmax
activation function for the output

p(xt,j = 1|xt−1, ..., x1) =
exp(wjh〈t〉)∑K

j=1
exp(wjh〈t〉)

, (2)

for all possible symbols j = 1, ...,K, where wj are the rows
of a weight matrix W . By combining these probabilities, we
compute the probability of the sequence x using

p(x) =

T∏

t=1

p(xt|xt−1, ..., x1). (3)

With the learned distribution, it is straightforward to gener-
ate a new sequence by iteratively sampling new characters
at each time step.

A Sequence-to-Sequence model consists of two RNNs,
an encoder and a decoder. The encoder learns to encode a
variable-length sequence into a fixed-length vector represen-
tation and the decoder will decode this fixed-length vector
representation into a variable-length sequence. It was orig-
inally proposed by Cho et al. (2014) for statistical machine
translation. The encoder RNN reads each character of an in-
put sequence x while the hidden states of the RNN changes.
After reading the end of this sequence, the hidden state of
the RNN is a summary c of the whole input sequence. Mean-
while, the decoder RNN is trained to generate the output se-
quence by predicting the next character yt given the hidden
state h〈t〉. However, unlike a pure RNN, both yt and h〈t〉

are also conditioned on yt−1 and the summary c of the input
sequence. In this case, to compute the hidden states of the
decoder, we have

h〈t〉 = f(h〈t−1〉, yt−1, c), (4)

and similarly, the condition distribution of the next character
is

p(yt|yt−1, ...y1, c) = g(h〈t〉, yt−1, c), (5)

where f and g are activation functions. Overall, the two
RNNs Encoder-Decoder are jointly trained to generate a tar-
get sequence given an input sequence.

All RNNs have feedback loops in the recurrent layer.
This design allows them to maintain information in “mem-
ory” over time. However, it can be difficult to train standard
RNNs to learn long-term temporal dependencies, but which
are common in programs. This is because the gradient of
the loss function decays exponentially with time (Chung et
al. 2014). Therefore, in our design, we adopt a variant of
RNN, long short-term memory (LSTM), specifically in our
encoder and decoder. LSTM units include a “memory cell”

that can keep information in memory for long periods of
time, in which case long history information can be stored.

In previous studies, the Sequence-to-Sequence model has
been trained to generate syntactically correct PDF objects
to fuzz a PDF parser (Godefroid, Peleg, and Singh 2017).
The core idea behind this work is that the source language
syntax can be learned as a by-product of training on string
pairs. Shi, Padhi, and Knight (2016) investigated with an
experiment that the Sequence-to-Sequence model can learn
both local and global syntactic information about source
sentences. This work lays a foundation for formal language
synthesis with RNN. In our paper, we apply a similar idea
for compiler fuzzing. During the training, we split the se-
quence into multiple training sequences of a fixed size d.
By cutting the sequences, we have the ith training sequence
xi = s[i∗d : (i+1)∗d], where s[k : l] is the subsequence of s
between indices k and l. The output sequence for each train-
ing sequence is the next character, i.e., yt = s[(i+1)∗d+1].
We configure this training process to learn a generative
model over the set of training sequences.

Workflow

In general, we propose DEEPFUZZ for two main objectives.
The first is to generate new programs that follow legitimate
grammars from a set of syntactically correct programs. The
major challenge comes from long sequence handling and
language grammar representing. The second objective is to
improve the compiler testing efficacy. We target at improv-
ing the coverage and capturing more internal errors in pro-
duction compilers.1

Figure 1 shows the workflow of DEEPFUZZ. There are
two stages in the entire workflow, Program Generation and
Compiler Testing. We target on production compilers such
as GCC, the GNU Compiler Collection (2018) and LLVM/-
Clang (Clang: a C language family frontend for LLVM
2018). On the first stage, we train a generative Sequence-to-
Sequence model with collected data from the original man-
crafted compiler test suites. Before we feed the sequences
into the training model, we preprocess them to avoid noise
data. We detail the preprocess step later in Preprocessing.
The model we are going to fit is a general Sequence-to-
Sequence model that has 2 layers with 512 hidden units for
each layer. We compare our model configuration with the
state-of-the-art sequence generation studies in Experiment
Setup. For program generation, we try different generation
strategies. We detail the generation strategies and their ra-
tionale in Generation Strategy. Because our target is to fuzz
production compilers, we aim at generating programs that
cover the most features of the C language. Therefore, we
also adopted some sampling methods as detailed in Sam-
pling Variants, to diversify the generated programs.

1An internal compiler error, also abbreviated as ICE, is an er-
ror during the compilation not due to the erroneous source code,
but rather results from bugs of the compiler itself (Cleve and Zeller
2005). Usually, it indicates inconsistencies being found by the com-
piler. Commonly, the compiler will output an error message like the
following: gcc: internal compiler error: Illegal instruction (pro-
gram). Please submit a full bug report, with preprocessed source if
appropriate.

On the second stage, we feed the generated C programs,
either syntactically correct or incorrect, to the compilers in
different optimization levels and log the compiling mes-
sages. In addition to the compiling message, we log the ex-
ecution trace to provide the coverage information. In sum-
mary, for this program generation task, we have three ob-
jectives: to generate syntax valid programs, to improve code
coverages, and to detect new bugs. We perform studies on
three related metrics, pass rate, coverage, and bugs, for the
three objectives in Evaluation.

Design
We propose DEEPFUZZ to continuously generate syntacti-
cally correct C programs to fuzz production compilers. As
described in Overview, the complete workflow contains two
stages, Program Generation and Compiler Testing. In this
section, we present more details.

Preprocessing

Before we set up the training stage, we split the sequence
into multiple training sequences of a fixed size. The out-
put sequence for each training sequence is the next charac-
ter right next to an input sequence. We configure this train-
ing process to learn a generative model over the set of all
training sequences. However, we notice that there is some
noise in the concatenated sequence which needs to be well-
handled. In preprocessing, we mainly take care of three is-
sues: comment, whitespace, and macro.

Comment. We first remove all the comments, including
line comments and block comments using patterns in regular
expression from the training data.

Whitespace. According to the POSIX standard, whites-
pace characters include common space, horizontal tab, ver-
tical tab, carriage return, newline, and feed. To unify pro-
gram style, we replaced all the white space characters with
a single space.

Macro. Macro is a common feature of the C program-
ming language. A macro is a fragment of code which has
been given a new name. In our implementation, whenever
the name is used, it is always replaced by the contents of the
macro.

Sampling Variants

We use the learnt Sequence-to-Sequence model to generate
new C programs. With a prefix sequence “int ”, for exam-
ple, it is highly possible for the learnt distribution to pre-
dict “main” to follow up. However, our target is to diversify
original programs to have more generated statements like
“int foo = 1;” or “int foo = bar(1);”. Therefore, we pro-
pose to adopt some sampling methods to sample the learnt
distribution. We describe the three sampling methods that
we employ for generating new C programs here: NoSample,
Sample and SampleSpace.

NoSample. In this sampling method, we directly rely on
the learnt distribution to greedily predict the best next char-
acter given a prefix.

Sample. To overcome the limitation of the NoSample
method, given a prefix sequence we propose to sample next
character instead of picking the top predicted one.

are three kinds of coverage information we collect during
our analysis: line coverage, function coverage, and branch
coverage. We use gcov, a command line tool supported by
gcc to collect the coverage information.

• Bug detection is the goal of testing. For compiler test-
ing, by feeding more programs to the compilers in differ-
ent optimization levels, it is expected to trigger bugs like
crashes or other code errors. As a self-protection mecha-
nism, compilers like GCC and Clang/LLVM have defined
a special kind of error called “internal compiler error”.
This error indicates the problem of the compiler itself dur-
ing the compilation process and the error message will
help us to find bugs in the compilers.

Pass rate

Pass rate is the ratio of generated syntax valid programs over
the complete set of newly generated programs. It is an indi-
cator of how well the C language patterns are encoded in
the proposed Sequence-to-Sequence model. In our evalua-
tion, specifically, we will analyze how the pass rate varies
with the number of epochs of training, different sampling
methods, and different generation strategies.

Epoch. An epoch is defined as an iteration of the learning
algorithm to go over the complete set of the training data.
We trained the model for a total of 50 epochs and we took a
snapshot of the model at different epochs: 10, 20, 30, 40, 50
and applied the models for new C program generation. We
tried the process for all the three sampling methods under
the generation strategy G1.

Result: Figure 2 shows the result.

• The pass rate increases with more training from 10 to 30
epochs. The drop of pass rate after 30 epochs may be a
result of overfitting.

• The best pass rate for all sampling methods is achieved at
30 epochs training. The highest pass rate is 82.63%.

Sampling. We have adopted different sampling methods
after training the model. As we proposed, a sampling method
decides how a new character is chosen based on the pre-
dicted distribution and it can affect the pass rate. Therefore,
we recorded the pass rate of the newly generated 10,000 pro-
grams based on the seed programs under different sampling
methods: NoSample, Sample and SampleSpace.

10 15 20 25 30 35 40 45 50
of Epoch

40

50

60

70

80

Pa
ss

 ra
te

 (%
)

NoSample
Sample
SampleSpace

Figure 2: Pass rate for different sampling methods

Result: Figure 2 shows the result. Note, this experiment
is conducted under the generation strategy G1.

• For all the sampling methods, the pass rate increases
within 30 epochs of training and after that, there is a small
drop.

• Comparing the pass rate for all the three sampling meth-
ods, NoSample achieves a better pass rate for every snap-
shot model than the other two methods Sample and Sam-
pleSpace. The highest pass rate is 82.63%.

Generation Strategy. To generate new programs, we have
introduced three generation strategies: G1) insert two new
lines at one location, G2) insert two new lines at different
locations, and G3) replace two new lines. The newly gener-
ated lines are based on the prefix sequences selected in the
seed programs. To analyze how the pass rate changes with
different generation strategies, we recorded the result of per-
forming program generation using a trained model after 30
epochs. In addition, we used NoSample in this experiment.

Generation Pass
Strategy rate (%)

NoSample
G1 82.63
G2 79.86
G3 73.23

Table 1: Pass rate of 10,000 generated programs

Result: Table 1 shows the result.

• The pass rate for the three generation strategies are
82.63%, 79.86%, and 73.23%, respectively. Comparing
pass rate under these three different generation strategies,
we conclude that G1 performs the best in terms of the pass
rate under NoSample.

• The result for G1 and G2 are similar in term of the pass
rate which is higher than the pass rate for G3. The reason
is probably that chopping out lines will introduce unbal-
anced statements, such as unclosed parenthesis, brackets,
or curly brackets.

Coverage

In addition to the pass rate, as described at the beginning
of this section, because we are conducting testing, coverage
information is another important metric. In this part, we an-
alyzed how coverage improvements (line, function, branch)
are achieved with different sampling methods and genera-
tion strategies.

Sampling. To compare the coverage improvements, we
recorded the coverage information, including how many
lines, functions, and branches are covered with the origi-
nal seed test suite (10,000) plus the newly generated test
suite (10,000) for both GCC-5 and Clang-3. In addition, to
analyze how sampling methods can influence the coverage
improvements, we recorded the coverage improvement per-
centages under different sampling methods.

Result: The coverage improvement information is shown
in Table 2 with the augmented test suite of 10,000 newly
generated C programs from DEEPFUZZ on GCC-5 and to
compare the metrics, we also present it in Figure 3.

Line Function Branch
0

2

4

6

8

10
Im

pr
ov

em
en

t (
%

)

G1
G2
G3

(a) NoSample

Line Function Branch
0

2

4

6

8

10

Im
pr

ov
em

en
t (

%
)

G1
G2
G3

(b) Sample

Line Function Branch
0

2

4

6

8

10

Im
pr

ov
em

en
t (

%
)

G1
G2
G3

(c) SampleSpace

Figure 3: Coverage improvements for different sampling methods

Line Function Branch
Coverage Coverage Coverage

G1
NoSample 0.33% 0.08% 0.26%
Sample 0.38% 0.19% 0.86%
SampleSpace 0.36% 0.17% 0.82%

G2
NoSample 5.41% 1.22% 3.12%
Sample 7.76% 2.13% 3.11%
SampleSpace 7.14% 2.44% 3.21%

G3
NoSample 3.32% 0.87% 2.20%
Sample 6.87% 1.33% 2.68%
SampleSpace 6.23% 1.72% 2.97%

Table 2: Coverage improvements with 10,000 generated pro-
grams

• Among the three different sampling methods, Sample
achieves the best performance in terms of line, function
and branch coverage improvements. For example, under
the generation strategy G2, the line coverage improve-
ment for NoSample, Sample and SampleSpace is 5.41%,
7.76% and 7.14%, respectively.

• The coverage improvement patterns for different genera-
tion strategies are similar across different sampling meth-
ods. G2 is always the best and G1 is always the worst
among the three. In another word, the performance of
sampling methods is slightly correlated with generation
strategies.

Generation Strategy. In addition to the sampling methods,
we are also interested in how these three different coverages
are improved under different generation strategies.

Result: Figure 3 shows how coverage improves using G1,
G2, and G3.

• Comparing the coverage improvements under the three
different generation strategies, G2, which is to insert two
new lines at different locations, in most cases, achieves
the best performance in terms of the line, function and
branch coverage improvements.

• Comparing with sampling methods, the adoption of gen-
eration strategies is a more influential factor for cover-
age improvement. For instance, under SampleSpace, the
function coverage improvement percentages for the three
generation strategies are 0.17%, 2.44% and 1.72%. The
coverage improvement increases 42 times after changing
from G1 to G2.

• G2 and G3 perform similarly in term of coverage im-
provement which is much higher than G1.

Overall. To demonstrate how our tool performs on
compiler fuzzing, we compared DEEPFUZZ with a well-
designed practical tool for compiler testing. Csmith (Yang
et al. 2011) is a tool that can generate random C programs.
To make a fair comparison, we recorded the coverage im-
provements of Csmith and DEEPFUZZ by both augmenting
the GCC and LLVM test suites with 10,000 generated pro-
grams in Table 3.

Note that we use Sample as our sampling method and G2
as our generation strategy when conducting this analysis. We
also documented coverage improvements during the process
of program generation in Figure 4. It demonstrates how the
line, function, and branch coverages are improved with the
increasing number of new tests.

Line Function Branch
Coverage Coverage Coverage

GCC

original 75.13% 82.23% 46.26%
Csmith 75.58% 82.41% 47.11%
% change +0.45% +0.18% +0.85%
DEEPFUZZ 82.27% 84.76% 49.47%
% change +7.14% +2.44% +3.21%
absolute change +23,514 +619 +16,884

Clang

original 74.54% 72.90% 59.22%
Csmith 74.69% 72.95% 59.48%
% change +0.15% +0.05% +0.24%
DEEPFUZZ 79.89% 74.56% 66.79%
% change +5.35% +1.66% +7.57%
absolute change +23,661 +2,456 +26,960

Table 3: Augmenting the GCC and LLVM test suites with
10,000 generated programs

Result:

• Csmith improved the coverage less than 1% for all the
cases while DEEPFUZZ improves the coverage of line,
function, and branch by 7.14%, 2.44%, and 3.21%, re-
spectively. DEEPFUZZ achieves better coverage improve-
ment than Csmith.

• The performance of the coverage improvement pattern for
DEEPFUZZ is similar over GCC-5 and Clang-3.

New bugs

Using different generation strategies and sampling methods,
based on the seed programs from the GCC test suite, we
can generate new programs. Because we aim at compiler
fuzzing, the number of bugs detected is an important indi-
cator of the efficacy of DEEPFUZZ. During our preliminary

10000 12000 14000 16000 18000 20000
of Tests

75

76

77

78

79

80

81

82

Co
ve

ra
ge

gcc-5
clang-3

(a) Line Coverage

10000 12000 14000 16000 18000 20000
of Tests

74

76

78

80

82

84

Co
ve

ra
ge gcc-5

clang-3

(b) Function Coverage

10000 12000 14000 16000 18000 20000
of Tests

50

55

60

65

Co
ve

ra
ge

 (%
)

gcc-5
clang-3

(c) Branch Coverage

Figure 4: Coverage improvement with the new tests generated

study, we caught 8 newly confirmed GCC bugs and we will
elaborate on two bugs that we detect with more details.

GCC Bug 84290: This is a bug we reported. DEEP-
FUZZ generate the two new lines (line 5 and line 6), which
triggered an internal compiler error of the built-in function

atomic load n. The error is triggered because that the first
argument of this function should be a pointer, but it points
to an incomplete type. This error is fixed and a new test
(atomic-pr81231.c) is added to the latest test suite in GCC.
This detected bug shows the importance of using the syntac-
tically well-formed but semantically nonsense tests for com-
piler testing.

1 double f () {

2 double r;

3 asm ("mov %S1,%S0; mov %R1,%R0" : "=r" (r) : "i" (20));

4 asm ("mov %S1,%S0; mov %R1,%R0" : "+r" (r) : "i" (20.));

5 atomic load n ((enum E ∗) 0, 0);

6 ;

7 return r;

8 }

GCC Bug 85443: This is a bug we reported. DEEPFUZZ

generates the two new lines (line 5 and line 6), which in-
troduced a new crash. The generated Atomic is a keyword
for defining atomic types and the assignment on line 6 trig-
gers the segmentation fault. This is a newly confirmed bug
on GCC-5 and has been fixed in the latest version. This de-
tected bug by DEEPFUZZ again shows the importance of us-
ing the syntactically well-formed but semantically nonsense
tests for compiler testing.

1 char acDummy[0xf0] attribute ((BELOW100));

2 unsigned short B100 attribute ((BELOW100));

3 unsigned short ∗p = &B100;

4 unsigned short wData = 0x1234;

5 Atomic int i = 3;

6 int a1 = sizeof (i + 1);

7 void Do (void) {

8 B100 = wData;

9 }

10 int main (void) {

11 ∗p = 0x9876;

12 Do ();

13 return (∗p == 0x1234) ? 0 : 1;

14 }

Limitations

Observing the generated programs, we noticed that many ill-
formed generations are caused by expected expressions.
To be more specific, this error message denotes the errors
like unbalanced parenthesis, brackets, or curly brackets. We
conclude two main reasons that account for this problem:
lack of training and loss of global information.

For the first reason, the training data is abundant but it
still lacks enough repeated patterns in the current training
dataset for training a good generative model. In our future
work, we can create a larger training dataset by enumerating
all the structures in the original test suites with new variable
or function names. On the other hand, because the genera-
tion is based on the prefix sequences, it will lose some global
information which is out of the scope of the prefix sequence.
To handle this problem, we either increase the length of the
training sequence to ensure that enough information is cap-
tured, or we can use some heuristics to help with model
training. The former method may cause less diversity in the
generated program and the latter one requires the assistance
of static program analysis.

Additionally, our proposed method is based on a
character-level Sequence-to-Sequence model. We provide a
sequence of characters for the current model which requires
a lot of effort in dealing with the token-level syntax. It hurts
the training scalability and pass rate as well. In C, there
are less than 32 keywords and over 100 build-in functions.
Both the pass rate and scalability will be increased if we
perform token-level sequence prediction over a Sequence-
to-Sequence model.

Related Work

AI-based applications for software security and software
analysis are widely discussed over the years (Zamir, Stern,
and Kalech 2014; Elmishali, Stern, and Kalech 2016; Nath
and Domingos 2016). Neural network based models domi-
nant a variety of applications and there has been a tremen-
dous growth in interest in using them for program anal-
ysis (Allamanis and Sutton 2013; Nguyen et al. 2013)
and synthesis (Lin et al. 2017; Devlin et al. 2017). Re-
current neural networks especially Sequence-to-Sequence-
based models have been developed for learning language
models of source code from a large code corpus and then

using these models for several applications, such as learn-
ing natural coding conventions, code suggestions, and auto-
completion and repairing syntax errors (Bhatia and Singh
2016; Hindle et al. 2012). It has been proven efficient, espe-
cially when a large amount of data is provided, in improving
the system efficacy as well as saving human labor. Addi-
tionally, RNN-based models are applied for grammar-based
fuzzing (Godefroid, Peleg, and Singh 2017; Cummins et al.
2018) which learns a generative model to produce PDF files
to fuzz the PDF parser.

Conclusion and Future Work

Compiler testing is critical for assuring the correctness
of computing systems. In this paper, we proposed an au-
tomatic grammar-based fuzzing tool, called DEEPFUZZ,
which learns a generative recurrent neural network that con-
tinuously generates syntactically correct C programs to fuzz
the off-the-shelf production compilers. DEEPFUZZ gener-
ated 82.63% syntax valid C programs and improved the test-
ing efficacy in regards to the line, function and branch cov-
erage. We also found new bugs which are actively being ad-
dressed by developers.

Acknowledgement

We gratefully acknowledge the support of NVIDIA Corpo-
ration with the donation of the Titan Xp GPU used for this
research. This research was supported in part by the National
Science Foundation (NSF) grants CNS-1652790 and the Of-
fice of Naval Research (ONR) grants N00014-13-1-0175,
N0001416-1-2265, N00014-16-1-2912, and N00014-17-1-
2894.

References

Allamanis, M., and Sutton, C. 2013. Mining Source Code Reposi-
tories at Massive Scale Using Language Modeling. In Proc. of the
10th Working Conference on Mining Software Repositories.

Bhatia, S., and Singh, R. 2016. Automated Correction for Syn-
tax Errors in Programming Assignments Using Recurrent Neural
Networks. arXiv preprint arXiv:1603.06129.

Bird, D. L., and Munoz, C. U. 1983. Automatic generation of
random self-checking test cases. IBM Systems Journal 22(3).

Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine
translation. In Proc. Empirical Methods in Nat. Lang. Proc.

Chung, J.; Gulcehre, C.; Cho, K.; and Bengio, Y. 2014. Empirical
evaluation of gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Clang: a C language family frontend for LLVM. 2018.
clang.llvm.org.

Cleve, H., and Zeller, A. 2005. Locating causes of program fail-
ures. In International Conference on Software Engineering (ICSE).

Cummins, C.; Petoumenos, P.; Murray, A.; and Leather, H. 2018.
Compiler fuzzing through deep learning. In ISSTA’18.

Devlin, J.; Uesato, J.; Bhupatiraju, S.; Singh, R.; rahman Mo-
hamed, A.; and Kohli, P. 2017. RobustFill: Neural program learn-
ing under noisy I/O. In Int’l Conf. on Machine Learning.

Dewey, K.; Roesch, J.; and Hardekopf, B. 2014. Language fuzzing
using constraint logic programming. In ASE’14.

Elmishali, A.; Stern, R.; and Kalech, M. 2016. Data-augmented
software diagnosis. In AAAI-16.

GCC, the GNU Compiler Collection. 2018. gcc.gnu.org.

Godefroid, P.; Kiezun, A.; and Levin, M. Y. 2008. Grammar-based
whitebox fuzzing. In PLDI’08.

Godefroid, P.; Peleg, H.; and Singh, R. 2017. Learn&Fuzz: Ma-
chine learning for input fuzzing. In ASE’17.

Hindle, A.; Barr, E. T.; Su, Z.; Gabel, M.; and Devanbu, P. 2012.
On the Naturalness of Software. In ICSE’12.

Hoare, T. 2003. The verifying compiler: A grand challenge for
computing research. In International Conference on Compiler
Construction.

Klein, G.; Kim, Y.; Deng, Y.; Senellart, J.; and Rush, A. M. 2017.
OpenNMT: Open-source toolkit for neural machine translation.
arXiv preprint arXiv:1701.02810.

Le, V.; Afshari, M.; and Su, Z. 2014. Compiler validation via
equivalence modulo inputs. In PLDI’14.

Le, V.; Sun, C.; and Su, Z. 2015. Finding deep compiler bugs via
guided stochastic program mutation. In OOPSLA’15.

Leroy, X., and Grall, H. 2009. Coinductive big-step operational
semantics. Information and Computation 207(2).

Leroy, X.; Blazy, S.; Kästner, D.; Schommer, B.; Pister, M.; and
Ferdinand, C. 2016. CompCert—a formally verified optimizing
compiler. In ERTS 2016: The 8th European Congress on Embedded
Real Time Software and Systems.

Lidbury, C.; Lascu, A.; Chong, N.; and Donaldson, A. F. 2015.
Many-core compiler fuzzing. In PLDI’15.

Lin, X. V.; Wang, C.; Pang, D.; Vu, K.; and Ernst, M. D. 2017. Pro-
gram synthesis from natural language using recurrent neural net-
works. Technical Report UW-CSE-17-03-01, Department of Com-
puter Science and Engineering, University of Washington, Seattle,
WA, USA.

Nath, A., and Domingos, P. M. 2016. Learning tractable proba-
bilistic models for fault localization. In AAAI-16.

Necula, G. C. 2000. Translation validation for an optimizing com-
piler. In Proc. PLDI’00.

Nguyen, T. T.; Nguyen, A. T.; Nguyen, H. A.; and Nguyen, T. N.
2013. A statistical semantic language model for source code. In
Proc. FSE’13.

of the International Organization for Standardization (ISO), J. T. C.
2011. Sc22/wg14. iso/iec 9899: 2011. Information technology,
Programming languages, C.

Shi, X.; Padhi, I.; and Knight, K. 2016. Does string-based neural
MT learn source syntax? In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing.

Sun, C.; Le, V.; Zhang, Q.; and Su, Z. 2016. Toward understanding
compiler bugs in GCC and LLVM. In ISSTA’16.

Sutskever, I.; Martens, J.; and Hinton, G. E. 2011. Generating text
with recurrent neural networks. In Proc. ICML’11.

Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to se-
quence learning with neural networks. In Advances in Neural In-
formation Processing Systems.

Yang, X.; Chen, Y.; Eide, E.; and Regehr, J. 2011. Finding and
understanding bugs in C compilers. In PLDI’11.

Zalewski, M. 2015. American fuzzy lop (AFL) fuzzer (2015).

Zamir, T.; Stern, R. T.; and Kalech, M. 2014. Using model-based
diagnosis to improve software testing. In AAAI-14.

